冷思考: AI和Crypto賽道的差異在哪裏?

作者:Haotian

大家都說以太坊Rollup-Centric戰略貌似失敗了?並深惡痛疾這種L1-L2-L3的套娃遊戲,但有意思的是,過去一年AI賽道的發展也走了一遍L1—L2—L3的快速演化。對比下,究竟問題出在哪裏?

1)AI的分層邏輯是,每層都在解決上層無法解決的核心問題。

比方說,L1的LLMs解決了語言理解和生成的基礎能力,但邏輯推理和數學計算確實是硬傷;於是乎到了L2,推理模型專門攻克這個短板,DeepSeek R1能做復雜數學題和代碼調試,直接補齊了LLMs的認知盲區;完成這些鋪墊之後,L3的AI Agent就很自然地把前兩層能力整合起來,讓AI從被動回答變成主動執行,能自己規劃任務、調用工具、處理復雜workflow。

你看,這種分層是“能力遞進”:L1打地基,L2補短板,L3做整合。每一層都在前一層基礎上產生質的飛躍,用戶能明顯感受到AI變得更聰明、更有用。

2)Crypto的分層邏輯是,每層都在爲前一層的問題打補丁,卻不幸帶來了全新更大的問題。

比如,L1公鏈性能不夠,很自然想到用layer2的擴容方案,但內卷了一波layer2 Infra潮之後貌似Gas低了、TPS累加提升了、但流動性卻分散了,生態應用還持續匱乏,使得過多的layer2 infra反倒成了大問題。於是乎開始做layer3垂直應用鏈,但應用鏈卻各自爲政,無法享受infra通用鏈的生態協同效應,用戶體驗反而更加碎片化了。

這樣一來,這種分層就成了“問題轉移”:L1有瓶頸,L2打補丁,L3混亂且分散。每一層都只是把問題從一個地方轉移到另一個地方,仿佛所有的解決方案都只是爲了“發幣”這一件事展開。

話到此,大家都應該明白造成這種悖論的症結是啥了:AI分層是被技術競爭驅動的,OpenAI、Anthropic、DeepSeek都在拼命卷模型能力;Crypto分層是被Tokenomic綁架的,每個L2的核心KPI都是TVL和Token價格。

So,本質上一個在解決技術難題,一個在包裝金融產品?孰是孰非可能也沒有答案,見仁見智。

當然,這個抽象的類比也沒那麼絕對,只是覺得二者的發展脈絡對比下非常有意思,周末做個思維按摩。

查看原文
本頁面內容僅供參考,非招攬或要約,也不提供投資、稅務或法律諮詢。詳見聲明了解更多風險披露。
  • 讚賞
  • 留言
  • 分享
留言
0/400
暫無留言
交易,隨時隨地
qrCode
掃碼下載 Gate APP
社群列表
繁體中文
  • 简体中文
  • English
  • Tiếng Việt
  • 繁體中文
  • Español
  • Русский
  • Français (Afrique)
  • Português (Portugal)
  • Bahasa Indonesia
  • 日本語
  • بالعربية
  • Українська
  • Português (Brasil)